Synthesized zinc peroxide nanoparticles (ZnO2-NPs): a novel antimicrobial, anti-elastase, anti-keratinase, and anti-inflammatory approach toward polymicrobial burn wounds
نویسندگان
چکیده
Increasing of multidrug resistance (MDR) remains an intractable challenge for burn patients. Innovative nanomaterials are also in high demand for the development of new antimicrobial biomaterials that inevitably have opened new therapeutic horizons in medical approaches and lead to many efforts for synthesizing new metal oxide nanoparticles (NPs) for better control of the MDR associated with the polymicrobial burn wounds. Recently, it seems that metal oxides can truly be considered as highly efficient inorganic agents with antimicrobial properties. In this study, zinc peroxide NPs (ZnO2-NPs) were synthesized using the co-precipitation method. Synthesized ZnO2-NPs were characterized by X-ray diffraction, Fourier transformed infrared, transmission electron microscopy, thermogravimetric analysis, differential scanning calorimetry, and ultraviolet-visible spectroscopy. The characterization techniques revealed synthesis of the pure phase of non-agglomerated ZnO2-NPs having sizes in the range of 15-25 nm with a transition temperature of 211°C. Antimicrobial activity of ZnO2-NPs was determined against MDR Pseudomonas aeruginosa (PA) and Aspergillus niger (AN) strains isolated from burn wound infections. Both strains, PA6 and AN4, were found to be more susceptible strains to ZnO2-NPs. In addition, a significant decrease in elastase and keratinase activities was recorded with increased concentrations of ZnO2-NPs until 200 µg/mL. ZnO2-NPs revealed a significant anti-inflammatory activity against PA6 and AN4 strains as demonstrated by membrane stabilization, albumin denaturation, and proteinase inhibition. Moreover, the results of in vivo histopathology assessment confirmed the potential role of ZnO2-NPs in the improvement of skin wound healing in the experimental animal models. Clearly, the synthesized ZnO2-NPs have demonstrated a competitive capability as antimicrobial, anti-elastase, anti-keratinase, and anti-inflammatory candidates, suggesting that the ZnO2-NPs are promising metal oxides that are potentially valued for biomedical applications.
منابع مشابه
Antibacterial and anti-biofilm effects of microwave-assisted biologically synthesized zinc nanoparticles
Objective(s): The present study aimed to investigate the antibacterial and anti-biofilm potential of the non-oxidized form of zinc nanoparticles (Zn NPs) prepared by a ‘green approach’ using the Lavandula vera extract with microwave irradiation.Materials and Methods: After synthesis of Zn NPs, the microdilution and disk diffusion methods was applied for antimicrobial evaluation followed b...
متن کاملAnti-biofilm Effects of Zinc Oxide Nanoparticles Synthesized by Leaf Extract of Typha Latifolia on Biofilm Gene Expression in Multidrug-Resistant Klebsiella Pneumoniae Strains: A Laboratory Study
Background and Objectives: Biofilms are a community of bacteria on surfaces coated with extracellular polymeric materials, and one strategy to remove biofilms is to use nanoparticles. The aim of this study was to synthesize green zinc oxide (ZnO) nanoparticles and determine its anti-biofilm effects on biofilm gene expression in multidrug-resistant Klebsiella pneumoniae strains. Materials and M...
متن کاملAntimicrobial and anti-inflammatory activity of chitosan-alginate nanoparticles: a targeted therapy for cutaneous pathogens
Advances in nanotechnology have demonstrated potential application of nanoparticles (NPs) for effective and targeted drug delivery. Here we investigated the antimicrobial and immunological properties and the feasibility of using NPs to deliver antimicrobial agents to treat a cutaneous pathogen. NPs synthesized with chitosan and alginate demonstrated a direct antimicrobial activity in vitro agai...
متن کاملTopical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages.
UNLABELLED Here we studied immunological and antibacterial mechanisms of zinc oxide nanoparticles (ZnO-NPs) against human pathogens. ZnO-NPs showed more activity against Staphylococcus aureus and least against Mycobacterium bovis-BCG. However, BCG killing was significantly increased in synergy with antituberculous-drug rifampicin. Antibacterial mechanistic studies showed that ZnO-NPs disrupt ba...
متن کاملAntimicrobial Silver Chloride Nanoparticles Stabilized with Chitosan Oligomer for the Healing of Burns
Recently, numerous compounds have been studied in order to develop antibacterial agents, which can prevent colonized wounds from infection, and assist the wound healing. For this purpose, novel silver chloride nanoparticles stabilized with chitosan oligomer (CHI-AgCl NPs) were synthesized to investigate the influence of antibacterial chitosan oligomer (CHI) exerted by the silver chloride nanopa...
متن کامل